BDD100K Autonomous Driving Segmentation
Large-scale diverse driving video dataset (Yu et al., CVPR 2020). Annotate driving scenes with bounding boxes, lane markings, drivable areas, and full-frame instance segmentation.
image annotation
Configuration Fileconfig.yaml
# BDD100K Autonomous Driving Segmentation Configuration
# Based on Yu et al., CVPR 2020
annotation_task_name: "BDD100K Driving Scene Annotation"
data_files:
- "sample-data.json"
item_properties:
id_key: "id"
text_key: "image_url"
context_key: "context"
user_config:
allow_all_users: true
annotation_schemes:
- annotation_type: "multiselect"
name: "objects"
description: "Select all object types visible"
labels:
- name: "pedestrian"
tooltip: "People walking"
- name: "rider"
tooltip: "Person on bike/motorcycle"
- name: "car"
tooltip: "Cars"
- name: "truck"
tooltip: "Trucks"
- name: "bus"
tooltip: "Buses"
- name: "train"
tooltip: "Trains"
- name: "motorcycle"
tooltip: "Motorcycles"
- name: "bicycle"
tooltip: "Bicycles"
- name: "traffic_light"
tooltip: "Traffic lights"
- name: "traffic_sign"
tooltip: "Traffic signs"
- annotation_type: "multiselect"
name: "lane_markings"
description: "Select lane marking types"
labels:
- name: "road_curb"
tooltip: "Road curb/edge"
- name: "double_white"
tooltip: "Double white lines"
- name: "double_yellow"
tooltip: "Double yellow lines"
- name: "single_white"
tooltip: "Single white line"
- name: "single_yellow"
tooltip: "Single yellow line"
- name: "crosswalk"
tooltip: "Crosswalk markings"
- annotation_type: "multiselect"
name: "drivable_area"
description: "Select drivable area types"
labels:
- name: "direct"
tooltip: "Directly drivable (same direction)"
- name: "alternative"
tooltip: "Alternatively drivable (lane change possible)"
- annotation_type: "radio"
name: "weather"
description: "Weather condition"
labels:
- name: "clear"
tooltip: "Clear weather"
- name: "partly_cloudy"
tooltip: "Partly cloudy"
- name: "overcast"
tooltip: "Overcast"
- name: "rainy"
tooltip: "Rainy"
- name: "snowy"
tooltip: "Snowy"
- name: "foggy"
tooltip: "Foggy"
- annotation_type: "radio"
name: "scene"
description: "Scene type"
labels:
- name: "city_street"
tooltip: "City street"
- name: "highway"
tooltip: "Highway"
- name: "residential"
tooltip: "Residential area"
- name: "parking_lot"
tooltip: "Parking lot"
- name: "tunnel"
tooltip: "Tunnel"
- annotation_type: "radio"
name: "time_of_day"
description: "Time of day"
labels:
- name: "daytime"
tooltip: "Daytime"
- name: "dawn_dusk"
tooltip: "Dawn or dusk"
- name: "night"
tooltip: "Nighttime"
interface_config:
item_display_format: "<img src='{{text}}' style='max-width:100%; max-height:500px;'/><br/><small>{{context}}</small>"
output_annotation_format: "json"
output_annotation_dir: "annotations"
Sample Datasample-data.json
[
{
"id": "bdd_001",
"image_url": "https://upload.wikimedia.org/wikipedia/commons/thumb/5/5a/Spyker_C8_Spyder.jpg/1200px-Spyker_C8_Spyder.jpg",
"context": "Driving scene from dash cam. Annotate objects, lane markings, drivable areas, weather, and time of day."
},
{
"id": "bdd_002",
"image_url": "https://upload.wikimedia.org/wikipedia/commons/thumb/9/9e/Frankfurt_Skyline.jpg/1200px-Frankfurt_Skyline.jpg",
"context": "Urban driving scene. Mark vehicles, pedestrians, traffic signs, and lane markings."
}
]
// ... and 1 more itemsGet This Design
Clone or download from the repository
Quick start:
git clone https://github.com/davidjurgens/potato-showcase.git cd potato-showcase/bdd100k potato start config.yaml
Details
Annotation Types
Domain
Use Cases
Tags
Found an issue or want to improve this design?
Open an IssueRelated Designs
Cityscapes Instance Segmentation
Urban scene understanding with instance-level semantic labeling (Cordts et al., CVPR 2016). Annotate street scenes with pixel-level labels for 30 classes across vehicles, humans, construction, and nature.
ADE20K Semantic Segmentation
Comprehensive scene parsing with 150 semantic categories (Zhou et al., CVPR 2017). Annotate indoor and outdoor scenes with pixel-level labels covering objects, parts, and stuff classes.
CelebA Face Attributes Classification
Large-scale face attributes dataset with 40 binary attributes (Liu et al., ICCV 2015). Annotate celebrity face images with attributes including hair color, age, gender, and facial features.