ADE20K Semantic Segmentation
Comprehensive scene parsing with 150 semantic categories (Zhou et al., CVPR 2017). Annotate indoor and outdoor scenes with pixel-level labels covering objects, parts, and stuff classes.
image annotation
Configuration Fileconfig.yaml
# ADE20K Semantic Segmentation Configuration
# Based on Zhou et al., CVPR 2017
annotation_task_name: "ADE20K Scene Parsing"
data_files:
- "sample-data.json"
item_properties:
id_key: "id"
text_key: "image_url"
context_key: "context"
user_config:
allow_all_users: true
annotation_schemes:
- annotation_type: "multiselect"
name: "building_elements"
description: "Select visible building/structure elements"
labels:
- name: "wall"
tooltip: "Walls"
- name: "floor"
tooltip: "Floor surfaces"
- name: "ceiling"
tooltip: "Ceilings"
- name: "door"
tooltip: "Doors"
- name: "window"
tooltip: "Windows"
- name: "stairs"
tooltip: "Stairs, steps"
- annotation_type: "multiselect"
name: "furniture"
description: "Select visible furniture"
labels:
- name: "chair"
tooltip: "Chairs, seats"
- name: "table"
tooltip: "Tables"
- name: "bed"
tooltip: "Beds"
- name: "sofa"
tooltip: "Sofas, couches"
- name: "cabinet"
tooltip: "Cabinets, shelves"
- name: "desk"
tooltip: "Desks"
- annotation_type: "multiselect"
name: "nature"
description: "Select visible nature elements"
labels:
- name: "tree"
tooltip: "Trees"
- name: "grass"
tooltip: "Grass"
- name: "plant"
tooltip: "Plants, flowers"
- name: "sky"
tooltip: "Sky"
- name: "water"
tooltip: "Water bodies"
- name: "mountain"
tooltip: "Mountains, hills"
- annotation_type: "multiselect"
name: "objects"
description: "Select visible objects"
labels:
- name: "lamp"
tooltip: "Lamps, lights"
- name: "painting"
tooltip: "Paintings, artwork"
- name: "curtain"
tooltip: "Curtains, drapes"
- name: "rug"
tooltip: "Rugs, carpets"
- name: "mirror"
tooltip: "Mirrors"
- name: "clock"
tooltip: "Clocks"
- annotation_type: "radio"
name: "scene_type"
description: "What type of scene is this?"
labels:
- name: "indoor"
tooltip: "Indoor scene"
- name: "outdoor"
tooltip: "Outdoor scene"
- name: "mixed"
tooltip: "Mixed indoor/outdoor"
interface_config:
item_display_format: "<img src='{{text}}' style='max-width:100%; max-height:500px;'/><br/><small>{{context}}</small>"
output_annotation_format: "json"
output_annotation_dir: "annotations"
Sample Datasample-data.json
[
{
"id": "ade_001",
"image_url": "https://upload.wikimedia.org/wikipedia/commons/thumb/5/5e/Schloss_Neuschwanstein_2013.jpg/1200px-Schloss_Neuschwanstein_2013.jpg",
"context": "Parse this scene by identifying all visible objects, structures, and nature elements."
},
{
"id": "ade_002",
"image_url": "https://upload.wikimedia.org/wikipedia/commons/thumb/a/a7/Camponotus_flavomarginatus_ant.jpg/1200px-Camponotus_flavomarginatus_ant.jpg",
"context": "Annotate all semantic categories visible in this scene."
}
]
// ... and 1 more itemsGet This Design
Clone or download from the repository
Quick start:
git clone https://github.com/davidjurgens/potato-showcase.git cd potato-showcase/ade20k potato start config.yaml
Details
Annotation Types
Domain
Use Cases
Tags
Found an issue or want to improve this design?
Open an IssueRelated Designs
BDD100K Autonomous Driving Segmentation
Large-scale diverse driving video dataset (Yu et al., CVPR 2020). Annotate driving scenes with bounding boxes, lane markings, drivable areas, and full-frame instance segmentation.
Cityscapes Instance Segmentation
Urban scene understanding with instance-level semantic labeling (Cordts et al., CVPR 2016). Annotate street scenes with pixel-level labels for 30 classes across vehicles, humans, construction, and nature.
LIP Human Parsing
Pixel-level human body part segmentation (Gong et al., CVPR 2017). Parse human images into 20 semantic parts including hair, face, arms, legs, and clothing items.