KITTI Road Object Detection
Autonomous driving benchmark for object detection (Geiger et al., CVPR 2012). Annotate vehicles, pedestrians, and cyclists with 3D bounding boxes and occlusion/truncation labels.
image annotation
Configuration Fileconfig.yaml
# KITTI Road Object Detection Configuration
# Based on Geiger et al., CVPR 2012
annotation_task_name: "KITTI Object Detection"
data_files:
- "sample-data.json"
item_properties:
id_key: "id"
text_key: "image_url"
context_key: "context"
user_config:
allow_all_users: true
annotation_schemes:
- annotation_type: "multiselect"
name: "object_types"
description: "Select all object types visible"
labels:
- name: "car"
tooltip: "Cars, vans"
- name: "van"
tooltip: "Vans, minivans"
- name: "truck"
tooltip: "Trucks"
- name: "pedestrian"
tooltip: "People walking"
- name: "person_sitting"
tooltip: "Person sitting"
- name: "cyclist"
tooltip: "Person on bicycle"
- name: "tram"
tooltip: "Trams, streetcars"
- name: "misc"
tooltip: "Other objects"
- name: "dontcare"
tooltip: "Regions to ignore"
- annotation_type: "radio"
name: "occlusion_level"
description: "Occlusion level of primary object"
labels:
- name: "fully_visible"
tooltip: "0: Fully visible"
- name: "partly_occluded"
tooltip: "1: Partly occluded"
- name: "largely_occluded"
tooltip: "2: Largely occluded"
- name: "unknown"
tooltip: "3: Unknown"
- annotation_type: "radio"
name: "truncation"
description: "Truncation level (object leaving image)"
labels:
- name: "not_truncated"
tooltip: "Object fully within image"
- name: "truncated"
tooltip: "Object partially outside image"
- annotation_type: "radio"
name: "difficulty"
description: "Detection difficulty"
labels:
- name: "easy"
tooltip: "Min height 40px, fully visible"
- name: "moderate"
tooltip: "Min height 25px, partly occluded"
- name: "hard"
tooltip: "Min height 25px, difficult to see"
- annotation_type: "text"
name: "bbox_coordinates"
description: "Bounding box: left, top, right, bottom (pixels)"
interface_config:
item_display_format: "<img src='{{text}}' style='max-width:100%; max-height:500px;'/><br/><small>{{context}}</small>"
output_annotation_format: "json"
output_annotation_dir: "annotations"
Sample Datasample-data.json
[
{
"id": "kitti_001",
"image_url": "https://upload.wikimedia.org/wikipedia/commons/thumb/5/5a/Spyker_C8_Spyder.jpg/1200px-Spyker_C8_Spyder.jpg",
"context": "Road scene from driving perspective. Annotate all vehicles, pedestrians, and cyclists with bounding boxes."
},
{
"id": "kitti_002",
"image_url": "https://upload.wikimedia.org/wikipedia/commons/thumb/1/1e/San_Francisco_from_the_Marin_Headlands_in_March_2019.jpg/1200px-San_Francisco_from_the_Marin_Headlands_in_March_2019.jpg",
"context": "Urban driving scene. Mark occlusion and truncation levels for each object."
}
]
// ... and 1 more itemsGet This Design
Clone or download from the repository
Quick start:
git clone https://github.com/davidjurgens/potato-showcase.git cd potato-showcase/kitti potato start config.yaml
Details
Annotation Types
Domain
Use Cases
Tags
Found an issue or want to improve this design?
Open an IssueRelated Designs
CUB-200-2011 Fine-Grained Bird Classification
Fine-grained visual categorization of 200 bird species (Wah et al., 2011). Annotate bird images with species labels, part locations, and attribute annotations.
DeepFashion Fine-Grained Fashion Classification
Large-scale fashion dataset with attribute prediction, consumer-to-shop matching, and landmark detection (Liu et al., CVPR 2016). Annotate clothing with 1000 categories and 50 attributes.
iWildCam Wildlife Detection & Classification
Camera trap image classification for wildlife monitoring (Beery et al., CVPR 2019). Classify wildlife species from camera trap images across diverse ecosystems worldwide.