Open Images V6 Object Detection
Large-scale object detection following Open Images V6 (Kuznetsova et al., IJCV 2020). Annotate 600 object classes with bounding boxes, visual relationships, and instance segmentation masks.
image annotation
Configuration Fileconfig.yaml
# Open Images V6 Object Detection Configuration
# Based on Kuznetsova et al., IJCV 2020
annotation_task_name: "Open Images V6 Object Detection"
data_files:
- "sample-data.json"
item_properties:
id_key: "id"
text_key: "image_url"
context_key: "context"
user_config:
allow_all_users: true
annotation_schemes:
- annotation_type: "multiselect"
name: "object_classes"
description: "Select all object classes visible in the image"
labels:
- name: "person"
tooltip: "Human figure"
- name: "car"
tooltip: "Automobile"
- name: "chair"
tooltip: "Chair or seat"
- name: "table"
tooltip: "Table or desk"
- name: "dog"
tooltip: "Dog"
- name: "cat"
tooltip: "Cat"
- name: "tree"
tooltip: "Tree"
- name: "building"
tooltip: "Building structure"
- name: "food"
tooltip: "Food items"
- name: "clothing"
tooltip: "Clothing items"
- name: "book"
tooltip: "Book"
- name: "phone"
tooltip: "Phone"
- annotation_type: "radio"
name: "is_occluded"
description: "Is the primary object occluded?"
labels:
- name: "not_occluded"
tooltip: "Object is fully visible"
- name: "partially_occluded"
tooltip: "Object is partially hidden"
- name: "heavily_occluded"
tooltip: "Object is mostly hidden"
- annotation_type: "radio"
name: "is_truncated"
description: "Is the object truncated by image boundary?"
labels:
- name: "not_truncated"
tooltip: "Object is fully within frame"
- name: "truncated"
tooltip: "Object extends beyond image"
- annotation_type: "radio"
name: "is_group"
description: "Is this a group of objects?"
labels:
- name: "single"
tooltip: "Single object instance"
- name: "group"
tooltip: "Group of similar objects"
- annotation_type: "text"
name: "visual_relationships"
description: "Describe visual relationships (e.g., 'person holding cup', 'dog on sofa')"
interface_config:
item_display_format: "<img src='{{text}}' style='max-width:100%; max-height:500px;'/><br/><small>{{context}}</small>"
output_annotation_format: "json"
output_annotation_dir: "annotations"
Sample Datasample-data.json
[
{
"id": "oi_001",
"image_url": "https://upload.wikimedia.org/wikipedia/commons/thumb/4/4f/Felis_silvestris_catus_lying_on_rice_straw.jpg/1200px-Felis_silvestris_catus_lying_on_rice_straw.jpg",
"context": "Annotate all visible objects. Note occlusion, truncation, and any visual relationships between objects."
},
{
"id": "oi_002",
"image_url": "https://upload.wikimedia.org/wikipedia/commons/thumb/1/18/Dog_Breeds.jpg/1200px-Dog_Breeds.jpg",
"context": "Identify objects and mark whether they are groups or single instances."
}
]
// ... and 1 more itemsGet This Design
Clone or download from the repository
Quick start:
git clone https://github.com/davidjurgens/potato-showcase.git cd potato-showcase/open-images potato start config.yaml
Details
Annotation Types
Domain
Use Cases
Tags
Found an issue or want to improve this design?
Open an IssueRelated Designs
CUB-200-2011 Fine-Grained Bird Classification
Fine-grained visual categorization of 200 bird species (Wah et al., 2011). Annotate bird images with species labels, part locations, and attribute annotations.
DeepFashion Fine-Grained Fashion Classification
Large-scale fashion dataset with attribute prediction, consumer-to-shop matching, and landmark detection (Liu et al., CVPR 2016). Annotate clothing with 1000 categories and 50 attributes.
iWildCam Wildlife Detection & Classification
Camera trap image classification for wildlife monitoring (Beery et al., CVPR 2019). Classify wildlife species from camera trap images across diverse ecosystems worldwide.