MVTec AD Industrial Defect Detection
Anomaly detection and localization in industrial images (Bergmann et al., CVPR 2019). Detect defects across 15 object and texture categories including metal nuts, transistors, and leather.
image annotation
Configuration Fileconfig.yaml
# MVTec AD Industrial Defect Detection Configuration
# Based on Bergmann et al., CVPR 2019
annotation_task_name: "MVTec AD Defect Detection"
data_files:
- "sample-data.json"
item_properties:
id_key: "id"
text_key: "image_url"
context_key: "product_type"
user_config:
allow_all_users: true
annotation_schemes:
- annotation_type: "radio"
name: "product_category"
description: "Select the product category"
labels:
- name: "bottle"
tooltip: "Glass or plastic bottles"
- name: "cable"
tooltip: "Electrical cables"
- name: "capsule"
tooltip: "Capsules, pills"
- name: "carpet"
tooltip: "Carpet texture"
- name: "grid"
tooltip: "Grid patterns"
- name: "hazelnut"
tooltip: "Hazelnuts"
- name: "leather"
tooltip: "Leather texture"
- name: "metal_nut"
tooltip: "Metal nuts"
- name: "pill"
tooltip: "Pills"
- name: "screw"
tooltip: "Screws"
- name: "tile"
tooltip: "Tiles"
- name: "toothbrush"
tooltip: "Toothbrushes"
- name: "transistor"
tooltip: "Transistors"
- name: "wood"
tooltip: "Wood texture"
- name: "zipper"
tooltip: "Zippers"
- annotation_type: "radio"
name: "anomaly_status"
description: "Is this image normal or defective?"
labels:
- name: "good"
tooltip: "No defects, normal sample"
- name: "defective"
tooltip: "Contains defects or anomalies"
- annotation_type: "multiselect"
name: "defect_types"
description: "Select defect types (if defective)"
labels:
- name: "scratch"
tooltip: "Surface scratches"
- name: "dent"
tooltip: "Dents or deformations"
- name: "hole"
tooltip: "Holes or punctures"
- name: "crack"
tooltip: "Cracks or fractures"
- name: "contamination"
tooltip: "Contamination or stains"
- name: "color_defect"
tooltip: "Color abnormalities"
- name: "missing_part"
tooltip: "Missing components"
- name: "misalignment"
tooltip: "Misaligned parts"
- annotation_type: "text"
name: "defect_location"
description: "Describe the location of defects (e.g., 'top-left corner')"
interface_config:
item_display_format: "<img src='{{text}}' style='max-width:100%; max-height:500px;'/><br/><small>Product type: {{context}}</small>"
output_annotation_format: "json"
output_annotation_dir: "annotations"
Sample Datasample-data.json
[
{
"id": "mvtec_001",
"image_url": "https://upload.wikimedia.org/wikipedia/commons/thumb/8/8a/Banana-Single.jpg/1200px-Banana-Single.jpg",
"product_type": "Example industrial product. Inspect for defects such as scratches, dents, holes, or contamination."
},
{
"id": "mvtec_002",
"image_url": "https://upload.wikimedia.org/wikipedia/commons/thumb/b/b1/VW_Lupo.jpg/1200px-VW_Lupo.jpg",
"product_type": "Industrial component. Mark whether this is a normal (good) sample or contains defects."
}
]
// ... and 1 more itemsGet This Design
Clone or download from the repository
Quick start:
git clone https://github.com/davidjurgens/potato-showcase.git cd potato-showcase/mvtec-ad potato start config.yaml
Details
Annotation Types
Domain
Use Cases
Tags
Found an issue or want to improve this design?
Open an IssueRelated Designs
BDD100K Autonomous Driving Segmentation
Large-scale diverse driving video dataset (Yu et al., CVPR 2020). Annotate driving scenes with bounding boxes, lane markings, drivable areas, and full-frame instance segmentation.
CUB-200-2011 Fine-Grained Bird Classification
Fine-grained visual categorization of 200 bird species (Wah et al., 2011). Annotate bird images with species labels, part locations, and attribute annotations.
DeepFashion Fine-Grained Fashion Classification
Large-scale fashion dataset with attribute prediction, consumer-to-shop matching, and landmark detection (Liu et al., CVPR 2016). Annotate clothing with 1000 categories and 50 attributes.