ImageNet Image Classification
Large-scale image classification following the ImageNet dataset (Deng et al., CVPR 2009). Classify images into 1000+ synsets organized according to the WordNet hierarchy.
image annotation
Configuration Fileconfig.yaml
# ImageNet Image Classification Configuration
# Based on Deng et al., CVPR 2009
annotation_task_name: "ImageNet Image Classification"
data_files:
- "sample-data.json"
item_properties:
id_key: "id"
text_key: "image_url"
context_key: "synset_candidates"
user_config:
allow_all_users: true
annotation_schemes:
- annotation_type: "radio"
name: "primary_category"
description: "Select the primary object category shown in the image"
labels:
- name: "dog"
tooltip: "Domestic dogs (n02084071)"
- name: "cat"
tooltip: "Domestic cats (n02121620)"
- name: "bird"
tooltip: "Birds (n01503061)"
- name: "fish"
tooltip: "Fish (n02512053)"
- name: "vehicle"
tooltip: "Vehicles and conveyances (n04524313)"
- name: "furniture"
tooltip: "Furniture (n03405725)"
- name: "food"
tooltip: "Food items (n07555863)"
- name: "plant"
tooltip: "Plants and flora (n00017222)"
- name: "building"
tooltip: "Buildings and structures (n02913152)"
- name: "person"
tooltip: "People (n00007846)"
- name: "other"
tooltip: "Other category not listed"
- annotation_type: "radio"
name: "synset_match"
description: "Does the image correctly represent the given synset?"
labels:
- name: "correct"
tooltip: "Image correctly shows the synset category"
- name: "incorrect"
tooltip: "Image does not match the synset"
- name: "ambiguous"
tooltip: "Multiple interpretations possible"
- annotation_type: "radio"
name: "image_quality"
description: "Rate the image quality for classification"
labels:
- name: "high"
tooltip: "Clear, centered object, good lighting"
- name: "medium"
tooltip: "Acceptable quality with minor issues"
- name: "low"
tooltip: "Poor quality, difficult to classify"
- annotation_type: "text"
name: "fine_grained_label"
description: "Provide a more specific label if known (e.g., 'golden retriever' instead of 'dog')"
interface_config:
item_display_format: "<img src='{{text}}' style='max-width:100%; max-height:500px;'/><br/><small>Candidate synsets: {{context}}</small>"
output_annotation_format: "json"
output_annotation_dir: "annotations"
Sample Datasample-data.json
[
{
"id": "inet_001",
"image_url": "https://upload.wikimedia.org/wikipedia/commons/thumb/2/26/YellowLabradorLooking_new.jpg/1200px-YellowLabradorLooking_new.jpg",
"synset_candidates": "dog (n02084071), Labrador retriever (n02099712), golden retriever (n02099601)"
},
{
"id": "inet_002",
"image_url": "https://upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Cat03.jpg/1200px-Cat03.jpg",
"synset_candidates": "cat (n02121620), tabby cat (n02123045), tiger cat (n02123159)"
}
]
// ... and 1 more itemsGet This Design
Clone or download from the repository
Quick start:
git clone https://github.com/davidjurgens/potato-showcase.git cd potato-showcase/imagenet potato start config.yaml
Details
Annotation Types
Domain
Use Cases
Tags
Found an issue or want to improve this design?
Open an IssueRelated Designs
CUB-200-2011 Fine-Grained Bird Classification
Fine-grained visual categorization of 200 bird species (Wah et al., 2011). Annotate bird images with species labels, part locations, and attribute annotations.
DeepFashion Fine-Grained Fashion Classification
Large-scale fashion dataset with attribute prediction, consumer-to-shop matching, and landmark detection (Liu et al., CVPR 2016). Annotate clothing with 1000 categories and 50 attributes.
iWildCam Wildlife Detection & Classification
Camera trap image classification for wildlife monitoring (Beery et al., CVPR 2019). Classify wildlife species from camera trap images across diverse ecosystems worldwide.