BigEarthNet Remote Sensing Classification
Multi-label land cover classification from Sentinel-2 imagery (Sumbul et al., IGARSS 2019). Classify satellite patches into 43 land cover classes following the CORINE taxonomy.
text annotation
Configuration Fileconfig.yaml
# BigEarthNet Remote Sensing Classification Configuration
# Based on Sumbul et al., IGARSS 2019
annotation_task_name: "BigEarthNet Land Cover Classification"
data_files:
- "sample-data.json"
item_properties:
id_key: "id"
text_key: "image_url"
context_key: "context"
user_config:
allow_all_users: true
annotation_schemes:
- annotation_type: "multiselect"
name: "artificial_surfaces"
description: "Select visible artificial surfaces"
labels:
- name: "urban_fabric"
tooltip: "Continuous and discontinuous urban fabric"
- name: "industrial"
tooltip: "Industrial or commercial units"
- name: "road_rail"
tooltip: "Road and rail networks"
- name: "port"
tooltip: "Port areas"
- name: "airport"
tooltip: "Airports"
- name: "construction"
tooltip: "Construction sites"
- name: "green_urban"
tooltip: "Green urban areas"
- name: "sport_leisure"
tooltip: "Sport and leisure facilities"
- annotation_type: "multiselect"
name: "agricultural"
description: "Select agricultural land types"
labels:
- name: "arable_land"
tooltip: "Arable land (crops)"
- name: "permanent_crops"
tooltip: "Vineyards, fruit trees, olive groves"
- name: "pastures"
tooltip: "Pastures"
- name: "heterogeneous"
tooltip: "Mixed agricultural areas"
- annotation_type: "multiselect"
name: "forest"
description: "Select forest types"
labels:
- name: "broad_leaved"
tooltip: "Broad-leaved forest"
- name: "coniferous"
tooltip: "Coniferous forest"
- name: "mixed_forest"
tooltip: "Mixed forest"
- annotation_type: "multiselect"
name: "natural"
description: "Select natural vegetation and open spaces"
labels:
- name: "natural_grassland"
tooltip: "Natural grasslands"
- name: "moors_heathland"
tooltip: "Moors and heathland"
- name: "sclerophyllous"
tooltip: "Sclerophyllous vegetation"
- name: "transitional_woodland"
tooltip: "Transitional woodland-shrub"
- name: "bare_rock"
tooltip: "Bare rocks"
- name: "sparsely_vegetated"
tooltip: "Sparsely vegetated areas"
- annotation_type: "multiselect"
name: "water"
description: "Select water bodies"
labels:
- name: "inland_waters"
tooltip: "Inland waters"
- name: "marine_waters"
tooltip: "Marine waters"
- name: "coastal_lagoons"
tooltip: "Coastal lagoons"
- name: "estuaries"
tooltip: "Estuaries"
interface_config:
item_display_format: "<img src='{{text}}' style='max-width:100%; max-height:500px;'/><br/><small>{{context}}</small>"
output_annotation_format: "json"
output_annotation_dir: "annotations"
Sample Datasample-data.json
[
{
"id": "ben_001",
"image_url": "https://upload.wikimedia.org/wikipedia/commons/thumb/e/e7/Everest_North_Face_toward_Base_Camp_Tibet_Luca_Galuzzi_2006.jpg/1200px-Everest_North_Face_toward_Base_Camp_Tibet_Luca_Galuzzi_2006.jpg",
"context": "Sentinel-2 satellite patch (120x120 pixels). Classify all visible land cover types according to CORINE Land Cover taxonomy."
},
{
"id": "ben_002",
"image_url": "https://upload.wikimedia.org/wikipedia/commons/thumb/1/1a/24701-nature-702704.jpg/1200px-24701-nature-702704.jpg",
"context": "Satellite image patch. Select all applicable land cover classes."
}
]
// ... and 1 more itemsGet This Design
Clone or download from the repository
Quick start:
git clone https://github.com/davidjurgens/potato-showcase.git cd potato-showcase/bigearth-net potato start config.yaml
Details
Annotation Types
Domain
Use Cases
Tags
Found an issue or want to improve this design?
Open an IssueRelated Designs
DOTA Aerial Image Object Detection
Oriented bounding box detection in aerial images (Xia et al., CVPR 2018). Detect 15 object categories with arbitrary orientations including planes, ships, vehicles, and sports facilities.
xView Satellite Object Detection
Large-scale overhead imagery object detection (Lam et al., arXiv 2018). Detect 60 object classes including vehicles, buildings, and infrastructure from satellite images.
CheXpert Chest X-Ray Classification
Multi-label classification of chest radiographs for 14 observations (Irvin et al., AAAI 2019). Annotate chest X-rays with pathology labels including uncertainty handling for clinical findings.