DOTA Aerial Image Object Detection
Oriented bounding box detection in aerial images (Xia et al., CVPR 2018). Detect 15 object categories with arbitrary orientations including planes, ships, vehicles, and sports facilities.
image annotation
Configuration Fileconfig.yaml
# DOTA Aerial Image Object Detection Configuration
# Based on Xia et al., CVPR 2018
annotation_task_name: "DOTA Aerial Object Detection"
data_files:
- "sample-data.json"
item_properties:
id_key: "id"
text_key: "image_url"
context_key: "context"
user_config:
allow_all_users: true
annotation_schemes:
- annotation_type: "multiselect"
name: "object_classes"
description: "Select all object classes visible"
labels:
- name: "plane"
tooltip: "Airplanes"
- name: "ship"
tooltip: "Ships and vessels"
- name: "storage_tank"
tooltip: "Storage tanks"
- name: "baseball_diamond"
tooltip: "Baseball diamonds"
- name: "tennis_court"
tooltip: "Tennis courts"
- name: "basketball_court"
tooltip: "Basketball courts"
- name: "ground_track_field"
tooltip: "Running tracks"
- name: "harbor"
tooltip: "Harbors"
- name: "bridge"
tooltip: "Bridges"
- name: "large_vehicle"
tooltip: "Large vehicles (trucks, buses)"
- name: "small_vehicle"
tooltip: "Small vehicles (cars)"
- name: "helicopter"
tooltip: "Helicopters"
- name: "roundabout"
tooltip: "Roundabouts"
- name: "soccer_field"
tooltip: "Soccer fields"
- name: "swimming_pool"
tooltip: "Swimming pools"
- annotation_type: "radio"
name: "difficulty"
description: "Annotation difficulty"
labels:
- name: "easy"
tooltip: "Clear, large objects"
- name: "difficult"
tooltip: "Small, occluded, or crowded"
- annotation_type: "text"
name: "oriented_bbox"
description: "Oriented bounding box: x1,y1,x2,y2,x3,y3,x4,y4,class,difficulty"
interface_config:
item_display_format: "<img src='{{text}}' style='max-width:100%; max-height:500px;'/><br/><small>{{context}}</small>"
output_annotation_format: "json"
output_annotation_dir: "annotations"
Sample Datasample-data.json
[
{
"id": "dota_001",
"image_url": "https://upload.wikimedia.org/wikipedia/commons/thumb/1/10/Empire_State_Building_%28aerial_view%29.jpg/800px-Empire_State_Building_%28aerial_view%29.jpg",
"context": "Aerial image. Detect objects with oriented bounding boxes. Objects may appear at any angle."
},
{
"id": "dota_002",
"image_url": "https://upload.wikimedia.org/wikipedia/commons/thumb/1/1e/San_Francisco_from_the_Marin_Headlands_in_March_2019.jpg/1200px-San_Francisco_from_the_Marin_Headlands_in_March_2019.jpg",
"context": "Aerial view. Mark all DOTA categories: planes, ships, vehicles, sports facilities, etc."
}
]
// ... and 1 more itemsGet This Design
Clone or download from the repository
Quick start:
git clone https://github.com/davidjurgens/potato-showcase.git cd potato-showcase/dota-aerial potato start config.yaml
Details
Annotation Types
Domain
Use Cases
Tags
Found an issue or want to improve this design?
Open an IssueRelated Designs
xView Satellite Object Detection
Large-scale overhead imagery object detection (Lam et al., arXiv 2018). Detect 60 object classes including vehicles, buildings, and infrastructure from satellite images.
BDD100K Autonomous Driving Segmentation
Large-scale diverse driving video dataset (Yu et al., CVPR 2020). Annotate driving scenes with bounding boxes, lane markings, drivable areas, and full-frame instance segmentation.
CelebA Face Attributes Classification
Large-scale face attributes dataset with 40 binary attributes (Liu et al., ICCV 2015). Annotate celebrity face images with attributes including hair color, age, gender, and facial features.